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A method of constructing the deformation mechanism maps of open-cell foams is
proposed. Starting with the deformation behaviour of the constitutive material and taking
account of foam geometry, we are able to determine the dominant deformation
mechanisms in the foam as a function of the temperature and the applied-stress. The
influences of cell-size, cell-strut shape and scales in the microstructure are studied. The
model is applied successfully to the experimental results available for open-cell pure nickel
foams. C© 2005 Springer Science + Business Media, Inc.

1. Introduction
Recent advances in foaming techniques have made it
possible to produce foams with preset densities, cell-
sizes and cell-shapes [1]. As foaming techniques con-
tinue to improve, it will be possible to manipulate
the structure of an increasing number of foams with
an increasing level of accuracy. These developments
provide new opportunities for creating new materials
whose properties are optimized for a given application.
In order to take full advantage of this new potential
for “materials by design,” it is necessary to develop
a good understanding of the effect of foam structure
on the properties of the foams. To date most studies
of the mechanical behaviour of foams have focused
on the deformation and failure mechanisms at or near
room temperature [2]. At these temperatures, foams
deform by elastic bending, elastic buckling and plas-
tic collapse. The relative density is usually the single
most important factor that determines the deformation
and failure mechanisms. Scale, on the other hand, was
shown to have a very weak effect on the mechanical
properties, with the exception of fracture [2].

While many of the current applications of foams in-
volve service at or near room temperature, there are
several promising applications that would involve ser-
vice at high temperatures. This is particularly true for
metal foams. Potential high-temperature applications
of metal foams include catalytic beds, electrodes, heat-
exchangers and sandwich structures for thermal insula-
tion and fire barriers [1, 3, 4]. At high temperatures de-
formation becomes time-dependent giving rise to creep
deformation even at small stresses, well below the yield
stress. Consequently, it is important to characterize the
high temperature deformation behaviour even when the
foam is not being used, primarily, for structural pur-

∗Author to whom all correspondence should be addressed.

poses. In the present case, we examine the idealized
case of the creep deformation of isotropic, open-cell
nickel foams. We will examine the effects of the rela-
tive density and the strut geometry as well as the effect
of scale arising from the grain-size and cell size.

The deformation-mechanisms will be discussed in
terms of mechanism maps similar to those developed by
Frost and Ashby for bulk metals [5]. The maps identify
the dominant deformation mechanism as a function of
the applied stress (normalized by the shear modulus)
and the homologous temperature. We start by extending
the concept of deformation-mechanism maps to foams
(Section 2). The maps are used, in Section 3, to examine
the influence of the relative density, strut-geometry and
scale on the deformation mechanism. In Section 4, the
accuracy of the maps is verified against some of the
existing experimental data on Ni foams.

2. Construction of deformation
mechanism maps

Steady-state conditions are often reached during con-
stant load (creep) and constant strain-rate tests of poly-
crystalline materials at high temperatures (T > 0.5 Tm

where Tm is the melting temperature). When steady-
state is reached during creep loading, the solid con-
tinues to deform at a constant strain-rate with no sig-
nificant increase in the applied stress. The steady-state
strain rate is then a function of only the deformation
temperature and the applied stress. Frost and Ashby
[5] attributed a strain-rate to each of the deformation
mechanisms acting at a given stress and temperature.
They then defined the dominant deformation mecha-
nism as the one making the largest contribution to the
total strain-rate. In this way it is possible to identify in
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Figure 1 Deformation mechanism map of solid Ni having a grain size
of 30 µm.

temperature-stress space the conditions over which a
given deformation mechanism dominates.

The deformation mechanism map for pure bulk
nickel with a grain-size of 30 µm is shown in Fig. 1.
The map was plotted in terms of the normalized stress
(τ /µ, where τ is the shear stress and µ is the shear
modulus) vs. the homologous temperature (T/Tm), with
contours of the total shear strain-rate (γ̇ ). Four fields
appear on the map. Each field is dominated by one the
following deformation mechanisms:

1. Elastic deformation: At low temperatures and
for small stresses, plastic deformation is negligible
and the material behaviour is essentially elastic. In
this work, the material behaviour is considered elas-
tic when the steady-state strain rate is less than
10−12/sec.

2. Power-law creep: At high temperatures (T >

0.3Tm) dislocations can overcome obstacles by climb.
The rate of deformation is then controlled by the
thermally-activated climb of dislocations. A power-law
function is then found to provide a reasonable descrip-
tion of the stress dependence of the strain rate. The
power-law creep field is subdivided into two regions
corresponding to low and high temperature behaviour.
In the first case, transport occurs mainly by pipe-
diffusion, while in the second case it occurs mainly
by volume diffusion [5].

3. Diffusional flow: Stress changes the chemical po-
tential of atoms on surfaces and grain-boundaries. The
presence of a shear stress will change the chemical
potential of some grain-boundaries more than others.
As a result, potential gradients are created and atoms
diffuse in response to these [6]. A strain rate could be
attributed to this diffusional flow. The resulting field
on the deformation-mechanism map is subdivided into
two regions; the first corresponds to the case in which
transport is dominated by boundary diffusion (low tem-
perature) and the other corresponds to bulk diffusion
(high temperature) [5].

4. Low temperature plasticity: At low temperatures
nickel deforms by dislocation glide. The rate of defor-
mation is obstacle-limited [5]. Stress assists the dislo-
cations at overcoming the activation energy barrier in
order to escape the obstacle. Consequently, the strain-

Figure 2 Illustration of the approach used to calculate the mechanism
maps of foams. The correlation of global and local quantities involves
knowledge of the foam geometry.

rate is an exponential function of the stress. A steady-
state strain-rate is rarely achieved at low-temperature.
As a result, the maps are constructed for conditions of
constant structure (constant stress). This is to say, we
calculate the yield stress for a given temperature and
strain-rate [5].

Essentially the same deformation processes are ex-
pected to appear on the mechanism maps of nickel
foams. However, the applied stress at the macroscopic
level generates a local stress at the level of the cell el-
ements, which is the relevant driving force for plastic
flow. As a consequence, the positions of the various
field-boundaries will change as a function of the foam
structure. In order to construct the deformation mech-
anism maps of the foam we adopt the approach shown
in Fig. 2. To start the global applied stress is related
to the local stress acting on the struts of the foam.
The effect of this local stress on the deformation of
the strut material is then analyzed and a local strain
rate is calculated using the properties of the bulk ma-
terial (e.g. diffusion coefficient, elastic modulus, creep
exponent. . . etc). Finally the geometry of the foam is
used to relate the local strain-rate to the observed global
strain rate. Knowledge of foam geometry is essential
for the steps in which we relate the global and local
quantities. However, a complete analysis of this geo-
metrical problem is often too complicated. As a result,
we adopt the approach of Gibson and Ashby [2]. In
this approach the global stress and strain-rate are re-
lated to their local counterparts by scaling constants
which are determined by fitting existing experimental
data.

In Sections 2.1–2.4 we discuss in detail the man-
ner in which the strain-rate is related to the applied
stress and temperature for each of the above defor-
mation mechanisms. The foams are modelled using
the unit cell proposed by Gibson and Ashby [2]. The
cell is a cube of side l and strut width t as shown
in Fig. 3. Adjoining cells are staggered so that their
members meet at their midpoints. While this unit-
cell differs from those observed in real foams, use-
ful results can still be obtained by using the exper-
imentally determined scaling constant, as described
earlier.
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Figure 3 Illustration of Gibson-Ashby unit cell [2] which is being used
to describe the foam structure. The cube edge length is l and the strut
thickness is tw.

2.1. Elastic properties of foams
When a shear stress of τ is applied to the foam, the
beams respond by bending. For a strut of length l, the
deflection, δ, is proportional to Fl3/EsI, where Es is the
Young modulus of the strut material and I is the second
moment of area of the member. Assuming that I ∝ t4,
F ∝ τ l2, ε ∝ δ/l and ρ

∗
/ρS ∝ (t/l)2, Gibson and Ashby

[2] arrive at the expression:

µ∗

E S
≈ C1

(
ρ∗

ρS

)2

(1)

where µ∗ and ρ∗ are, respectively, the shear modulus
and density of the foam. ρS is the density of the solid.1

In the above approach, all of the geometric details of
the problem were incorporated into the constant C1.
Gibson and Ashby [2] estimated the value of C1 by fit-
ting the existing experimental data for a broad range of
foams. Using a similar analysis, the value of the elastic
modulus of the foam can be derived. Equation 2 sum-
marizes the values of the elastic constants as obtained
by [2]:

µ∗

E S
≈ 3

8

(
ρ∗

ρS

)2

(2a)

E∗

E S
≈

(
ρ∗

ρS

)2

(2b)

υ∗ ≈ 1

3
(2c)

In order to analyze the effect of strut geometry on
the elastic behaviour of foams, we repeated the above
analysis for solid and hollow struts of square, circular
and triangular cross sections as shown in Fig. 4. The

1Throughout this work we will follow the convention in which an asterisk
is used to denote foam properties while a superscript, S, is used to
identify the properties of the solid.

T AB L E I Elastic moduli of foams having the strut geometries shown
in Fig. 4
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Figure 4 The various strut cross-sections which are to be considered in
this work.

results are summarized in Table I below. It should be
pointed out that the value of C1 was kept equal to 1 for
all of the various geometries. As such, the differences
between the various expressions are purely due to the
effect of beam geometry on the second moment of
area, I. When the various moduli are compared for a
constant beam cross section, it is found that the modulus
increases in the order: circle, square, triangle.

2.2. Low temperature plasticity
When yielding takes place in compressively loaded
metallic foam, plastic hinges develop and the foam
collapses plastically. Under these circumstances, it is
not possible to relate the strain-rate, temperature and
applied-stress using the steady-state formalism [5]. Our
approach is then to identify the stress at which plas-
tic collapse occurs at a given temperature and for a
given strain-rate. Strain-rate contours are, therefore,
not meaningful for stresses larger than this collapse
stress.

For the present case in which glide is controlled by
forest dislocation obstacles, the yield stress is related to
the strain-rate and temperature by the standard equation
[5]:

γ̇ ∗ = 1012

(
τ ∗

µ

)2

exp

((−�F

kT

)(
1 − τ ∗

τ ∗
0K

))
(3a)

In this equation, τ is the shear stress and k is Boltz-
mann’s constant. The activation energy, �F, is that
needed to overcome an obstacle without the assistance
of stress. Following Frost and Ashby [5], this quantity
is estimated as �F ≈ 0.5µS

0 b3 = 3.8 eV. The yield
stress of the foam at 0 K, τ ∗

0K , depends on the density
and geometry of the foam. We approximate, τ ∗

0K , us-
ing a modification2 of the result derived by Gibson and

2In [2] the result is stated as: σ ∗ = 0.3σ S
ys (ρ∗/ρs )1.5 For cubic cells

with square struts, the relative density is 3t2
w/ l2 In addition, H =

t3
w/4. Therefore, the proportionality constant in Equation 3b becomes

(0.3)(4)(3)1.5 = 6.24.
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T AB L E I I Values of H = ∫
yd A for the various strut cross-sections

shown in Fig. 4
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Ashby [2]:

τ ∗
0K ≈ 6.24τ S

0K

(
H

l3

)
(3b)

where τ S
0K is the yield stress of the solid at 0 K. Follow-

ing [5], τ S
0K is estimated as µb/ls, ls being the spacing

of the forest dislocation obstacles. For well-annealed
samples, the value of ls is of the order of 10−7 m. As for
the moment, H, in Equation 3b it is defined as

∫
yd A,

where y is the distance measured from the neutral axis.
Table II lists the values of H for the various strut ge-
ometries shown in Fig. 4.

To conclude the present discussion it is important to
consider the case in which the foam is loaded in tension.
To a first approximation, the foam is expected to yield
by the same mechanism in both tension and compres-
sion [2]. The main difference concerns the post-yield
behaviour. In the case of tensile loading the beams
will rotate and gradually align in the direction of the
applied load. This will reduce the bending moment
on the beams and, gradually, stretching will become
the dominant deformation mechanism. For the present
analysis we are only interested in the onset of yielding
and as such, the equations derived above can still be
used.

2.3. Power-law creep
The power-law creep rate, γ̇ , of a beam which is loaded
along its axis is given by the simple constitutive law
[5]:

γ̇ = γ̇o

(
τ

τo

)n

(4a)

The constants, γ̇ , τ o and n, are material-dependent.
In the case of nickel, the creep exponent, n, is equal
to 4.6, τ o is approximately equal to the shear modulus,
µS, and γ̇o is given by [5]:

γ̇o = (3 × 10−6)(
√

3)n+1 Deffµb

kT
(4b)

The effective diffusion coefficient, Deff , takes ac-
count of the fact that mass-transfer can take place by
pipe-diffusion as well as bulk diffusion. The value of
Deff is then a weighted average of the two contributions
[5]:

Deff = Dv + Pac Dc (4c)

The constants, Dv and Dc, are the bulk and pipe
diffusion coefficients, respectively, and ac is the cross-

sectional area of the pipe diffusion path. The values of
these constants, as well as others, are taken from the
review by Frost and Ashby [5]. The dislocation density,
P, in Equation 4c could also be expressed in terms of
τ 2. Consequently, an effective creep exponent of n +
2 is expected at low temperatures where mass transfer
is controlled by pipe diffusion. At high temperatures,
mass transfer is controlled by bulk diffusion and the
creep exponent is n. Use of the present formalism leads
to smooth transition between the low and high temper-
ature behaviours [5].

Analysis of the creep of foams is more complex than
that described above because it involves the creep of
a beam in bending as shown in Fig. 5. This problem
was analyzed by Andrew et al. [3] who arrived at the
general result that:

δ̇ =
(

1

n + 2

)
κ̇o Fnln+2

Mn
o 2n+1

(5)

In this equation δ̇ is the beam deflection rate, F is the
applied force and κ̇o is equal to 2γ̇o/tw. Mo is a constant
whose value depends on the cross-section of the beam.
A summary of the value of Mo for square, circular and
triangular beams is provided in Table III, below.

The global creep rate of the foam, γ̇ ∗, is related to
the deflection rate, δ̇, and the globally applied stress,
τ ∗, by two scaling constants, C2 and C3. The general
foam creep equation is then given by:

γ̇ ∗

γ̇o
= 2C2 (C3τ

∗) l3(n+1)
c

(n + 2)(2n+1)Mn
o tw

(6)

Starting with this equation and fitting existing exper-
imental data in the limits of n = ∞ and n = 1, Andrews
et al. [3] obtained C2 = 0.6 and C3 = 1.7.

2.4. Diffusional creep:
The rate of diffusional flow in bulk materials is de-
scribed by the equation [6]:

γ̇ = f
�Deff

kT
τ (7)

where � is the atomic volume and Deff is an effec-
tive diffusion coefficient which takes into account the
contributions of bulk and boundary diffusion. Mathe-
matically, Equation 7 is a special case of Equation 4,
with n =1, γ̇0 = f Deff and τ 0 = kT/�. Consequently,
the results which were derived in Section 2.3 for the
power-law creep of foams could be used to describe the
diffusional flow of foams, provided that the appropriate
substitutions are made.

An important feature of diffusional flow is scale de-
pendence; in Equation 7, f is a function whose value
is determined mainly by the grain-size. For the case in
which the grain size is much smaller than the strut size,
f takes the value of ∼40/d2 [6]. When the grain-size is
comparable to the beam size, the value of f becomes
dependent on the geometry of the specimen as shown in
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Figure 5 Illustration of the geometry of the beam bending problem considered by Andrews et al. [3].

Table IV. In most foams, the grain-size is comparable
to the strut thickness. Under these circumstances, we
have modelled solid struts as wires of diameter tw and
grain-size d. Hollow struts were modelled as foils hav-
ing the same thickness as the strut wall. The value of
the effective diffusion coefficient is also dependent on
the geometry when the grain size is comparable to the
strut size and the appropriate values of Deff are shown
in Table IV.

3. Modelling results
The equations derived in Section 2 contain all of the
information needed to construct the deformation mech-
anism maps for open-cell nickel foams. In order to de-
scribe the foam completely, it is necessary to identify
the relative density, the cell size, the strut geometry
(shape & void size) and the grain-size. Fig. 6 is the de-
formation mechanism map of a foam having a relative-
density of 20%, cell-size (edge length) of 400 µm and
a grain-size of 20 µm. The struts of this foam were
assumed to be full with a square-cross section of edge
length 100 µm. The fields which appear on the foam
map are the same as those appearing in the bulk material
map. The main difference is that the applied stresses
are much smaller than those encountered in the bulk

T AB L E I I I Values of the constant M0 for the various strut cross-
sections shown in Fig. 4. Expressions for the square and triangular cross-
sections allow for both solid and hollow struts, where as, the expression
for the circular cross-section applies only to solid struts

Mo

Square τo(t (3n+1)/n
w −t (3n+1)/n

v )

2(2n+1)t1/n
w
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√

πτo�
(
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2n

)

8�
(

5n+1
2n
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Figure 6 Example of the deformation mechanism map of Ni-foams. In
this example, the relative density is 20%, the cell-size is 400 µm and the
grain size is 20 µm. The struts are assumed to be solid with square-cross
section.

materials. This is to be expected since the stresses act-
ing on the struts are larger than the applied stress by a
factor of the order of 1/(ρ∗/ρS).

In what follows, we examine the effects of the rela-
tive density (Section 3.1), strut geometry (Section 3.2)
and scale (Section 3.3) on the deformation of open-cell
nickel foams.

3.1. Effect of relative density
Foam properties are strongly dependent on the relative-
density. In Section 2 it was shown that the elastic mod-
ulus varies as (ρ∗/ρS)2 while the yield stress varies as
(ρ∗/ρS)1.5 . It is the creep rate, however, which shows
the strongest dependence on the relative density. In the
simplest case of open-cell foam with solid-struts, the
creep rate varies as (ρ∗/ρS)−(3n+1)/2. Consequently, the
ratio of the creep rate of a foam of relative density of
2% to that of a foam with a relative density of 20%
could be as large as 108.

T AB L E I V Summary of the quantities needed to calculate the diffusional flow rate for various sample geometries and grain-sizes

Sample geometry Grain geometry f Deff

Any shape, for e.g. sphere of radius a Sphere of diameter d � a 40
d2 [6] Dv + 3.5

d ab Db

Foil of thickness a Square array with side length d > a 22.4
ad [6] Dv + 1.6

a ab Db

Wire of diameter a Cylinder of length d > a 37.1
ad [6] ≈ Dv
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Figure 7 Deformation map for a foam having a relative density of 4%,
the cell-size of 400 µm and the grain size is 20 µm. As before, the struts
are solid with a square-cross section.

Figure 8 Effect of the relative density on the strain-rate of the foam at
0.5 and 0.9 Tm. The cell size is 400 µm, the struts are square and grain
size is 20 µm. The relative density increases in the direction of the arrow
in the order 4, 8, 12, 16 and 20%.

The influence of the relative density on mechanical
properties is clearly illustrated in Figs 7 and 8. Fig. 7
is the deformation mechanism map of a foam having a
relative density of 4%. It should be compared to Fig. 6,
which is the mechanism map for a foam with a relative
density of 20%. The effect of the relative density on the
yield stress is immediately clear. It is also noticeable
that the regime of low-temperature creep is wider in the
foam with the higher density. This is attributed to the
larger stresses which act on the high density foam and
consequently lead to higher dislocation density. The
effect of the relative density on the creep rate is more
clearly shown in Fig. 8. In this figure the steady-state
strain-rate is plotted against the applied stress for foams
with densities between 4 and 20%. The effect is most
remarkable in the power-law regime where n is 4.6. A
smaller, but still significant, effect is encountered in the
diffusional flow regime where n is 1.

3.2. Effect of strut geometry
The bending resistance of a beam of length l and
cross-sectional area A is determined by the second
moment of the cross-section, I. We begin by compar-
ing the mechanical behaviours of foams having non-

Figure 9 Effect of the strut shape on strain-rate of the foam at 0.5 and
0.9 Tm. The relative density is 10%, the cell size is 400 µm and the grain
size is 20 µm. The shape of the strut cross-section changes from circular
to square to triangular in the direction of the arrows.

hollow struts with square, circular and triangular cross-
sections. Fig. 9 shows the effect of the strut shape on the
creep rate at 0.5 and 0.9 Tm. The triangular and circular
cross-sections appear to offer, respectively, the maxi-
mum and minimum resistance to bending among the
shapes considered. The difference between the creep
rates for the various geometries is, however, relatively
small, typically, of the order of a factor of 3 or less.

In the case of hollow struts the system acquires and
additional degree of freedom. It is now possible to vary
the ratio of the void-size to the strut-size (tv/tw) at a
constant relative density. In Fig. 10, the strain-rate is
plotted as a function of the applied stress for increasing
values of tv/tw. As expected, the creep rate decreases as
the value of tv/tw increases. This follows from the fact
that the second moment of the cross-section increases
with tv/tw. An important implication of the present re-
sult is that the creep rate can be reduced by as much
as a factor of 100 without changing the relative den-
sity. Caution should be exercised, however, because as
tv/tw increases, the walls of the strut become increas-
ingly thinner and the strut walls become increasingly
susceptible to plastic buckling. The important point,
then, is that the bending resistance of the foam can

Figure 10 Effect of the strut shape on strain-rate of the foam at 0.5 and
0.9Tm. The relative density is 10%, the cell size is 400 µm and the grain
size is 20 µm. The struts are hollow with a square cross section. The
ratio tv/tw increases in the direction of the arrow in the order: 0, 0.25,
0.50 and 0.75.
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Figure 11 Effect of grain size on the deformation mechanism map of 10% and cell-size of 400 µm. The struts are solid with a circular cross-section.
The grain size is indicated at the top left-hand corner of each map.

Figure 12 (a) Schematic diagram of the strut geometry typically observed in the SEM. (b) Idealized strut geometry used to model the behaviour of
the 3.5% foam.

be optimized, without changing the relative density, by
controlling the value of tv/tw.

3.3. Effect of scale
In this section the effect of scale on the deformation
behaviour is discussed in terms of the cell-size, l, and
the grain-size, d. Starting with the cell-size, we ob-
serve that the deformation behaviour is unaffected by
changes in l, provided that the relative density and the
slenderness (tv/tw) are kept constant. This result is in
agreement with the analysis of Gibson and Ashby for
solid-strut foams [2].

We next turn our attention to the effect of grain-size
on deformation. As mentioned in Section 2, the rate of
diffusional flow is inversely proportional to the grain
size to the second or third power. Consequently, de-
creasing the grain-size will expand the diffusional flow
field at the expense of the other fields. In addition, de-
creasing the grain-size will increase the contribution
that grain-boundary diffusion makes to mass transport
and this will expand the region of low-temperature dif-
fusional flow at the expense of the high-temperature
region. These changes are shown in Fig. 11, in which
three grain sizes are considered. As discussed in Sec-
tion 2.4, the appropriate equations for diffusional flow

should be chosen with care when the grain-size is com-
parable to, or greater than, the width of the strut. In the
above example, the struts have a circular cross section
with a diameter of 80 µm. The equations for diffusional
flow in wires were used to describe the case where d is
400 µm, i.e. d 	 tw.

4. Comparison with experimental data
Most of the existing experimental data on nickel-foams
concerns their mechanical behaviour near room tem-
perature. Data on the high temperature behaviour of
these foams is very limited. In the present section, we
make use of the recent results of Goussery [4] on the
creep of nickel foams to verify the accuracy of our
mechanism maps. The foams considered had relative
densities of 2.9, 3.5, 6.1 and 7.2%. The first three foams
were tested at 500, 600 and 700◦C, while the last was
tested only at 600 ◦C. The above temperatures corre-
spond, respectively, to 0.45, 0.51, 0.56 Tm.

Scanning electron microscopy (SEM) observations
by Goussery [4] showed that the cells were slightly
elongated spheres with a diameter of ∼500 µm. The
struts were hollow and had the geometry shown in
Fig. 12a. In our calculations, we approximated the strut
cross-section as being triangular with a void size of
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T AB L E V Comparison between the predicted and experimentally measured [4] strain-rates in the 3.5% foam. See text for details

Temperature (◦C) & shear-stress (MPa) Measured shear strain-rate (s−1) Calculated shear strain-rate (s−1) Ratio

(Measured/Calc.)
500, 0.127 2.1 E-7 3.3 E-7 0.63
500, 0.161 2.4 E-7 1.0 E-6 0.24
500, 0.179 9.7 E-6 1.8 E-6 0.54
500, 0.202 3.8 E-6 3.8 E-6 1.01
600, 0.127 1.0 E-5 5.6 E-6 1.80
600, 0.161 2.8 E-5 2.2 E-5 1.24
600, 0.179 3.8 E-4 4.2 E-4 0.91
600, 0.202 2.1 E-4 9.0 E-5 2.31
700, 0.087 3.3 E-5 1.5 E-5 2.22
700, 0.115 6.2 E-5 5.9 E-5 1.06
700, 0.127 1.6 E-4 9.8 E-5 1.61

30 µm. The thickness of the strut wall depends on the
density of the foam considered. Fig. 12b shows the
geometry used for modeling the foam with a relative
density of 3.5%. The grain size was taken to be 10 µm
which is of the order of the strut wall thickness, in
agreement with the experimental observations [4]. As
for the cell geometry, it was modelled as being cubic
(Fig. 3) with side length of 400 µm. This value is
chosen so as to produce the same volume as a sphere
of diameter 500 µm. Finally, the obstacle spacing, ls,
was estimated from experimental measurements of the
yield-stress at room-temperature.

Table V compares the predicted and the experimen-
tally measured values of the strain-rate of the 3.5%
foam. In most cases, the results of the model are within
a factor of 2 of the experimental results. The agree-
ment is remarkable considering that many of the phys-
ical quantities that enter into the model are only know
to within a factor of 2 or 3. Comparison between the
model’s predictions and the experimental data on the
other three foams leads to agreement within a factor of
2, 70% of the time. The present results support the cred-
itability of the model, especially considering that no
adjustable-parameters have been used to fit the present
experimental data.

In Fig. 13, the experimental data for the 3.5% foam
is superimposed on the computed deformation mech-
anism map of the foam. It is interesting to note that
the experiments were carried out near the border re-
gion between diffusional flow and power-law creep.
As such, the creep exponents derived from the exper-
imental data are expected to show intermediate values
between n = 1, for diffusional flow and n = 4.6 + 2 for
low-temperature creep. This is indeed the case as the
experimentally measured exponents were between 3.7
and 6.

5. Summary and future work
The hot-deformation behaviour of nickel foams was
investigated using the approach of deformation-
mechanism maps. Using these maps we examined the
effect of foam structure on the dominant deformation
mechanism and the observed strain-rate. The results
could be briefly summarized as follows:

1. The relative density has the greatest influence on
the deformation behaviour of foams. The most dramatic

Figure 13 The placement of the experimental data of [4] on the defor-
mation mechanism map for the 3.5% foam.

effect is observed in relation to the rate of power-law
creep. This rate could increase by as much as 8 orders
of magnitude when the relative density is reduced by a
single order of magnitude.

2. The shape of the strut had a relatively minor effect
on the deformation behaviour. The creep rate of struts
having a triangular cross-section was approximately
twice that of struts having a circular cross section of
the same area.

3. Variation of the ratio of void-size to the strut size
(tv/tw) in hollow-strut beams can change the creep rate
by up to two orders of magnitude. This presents an
opportunity for manipulating the properties of the foam
without varying the relative density.

4. The size of the foam cells does not affect the defor-
mation mechanism, provided that the relative density
and the slenderness (tv/tw) are kept constant.

5. Decreasing the grain size will enhance the
rate of diffusional flow and consequently, expand
this field at the expense of the other fields in the
map.

Comparison between the predicted and experimen-
tally measured strain-rates confirms the accuracy of
the model. In general the predicted strain-rates are
within a factor of 2 or less of the measured val-
ues. Having established the accuracy of the present
approach, it is now possible to use the deformation
mechanism maps as a design tool for planning future
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experimental work on the hot-deformation of foams.
With the aid of the maps it is very simple to iden-
tify the experimental conditions under which a cer-
tain mechanism is expected to dominate. Experiments
could then be carried out to understand the mechanism
of interest in detail. Alternatively, the maps could be
used to identify and investigate those conditions for
which a transition in the deformation mechanism is
expected.
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